nealing at and quenching (LN_2) from different temperatures.

It should be mentioned that results obtained with differential thermal analysis (DTA) did not agree with those obtained by metallographic and X-ray diffraction methods. For example, with DTA, $SmCo_{5+x}$ and Sm₂Co₁₇ compounds were found to be peritectically melting in agreement with the results of Lihl et al. (1969) and Buschow & Van der Goot (1968). However, with X-ray diffraction and metallographic methods, these compounds were found to be congruently melting. A shift in the composition of the alloys due to oxidation, evaporation of Sm and chemical reactivity of Sm with crucible materials at elevated temperatures may lead to this discrepancy. In the case of metallographic and X-ray diffraction methods, this compositional shift can be detected and interpreted directly, whereas in the case of DTA this is not possible since the change in composition occurs gradually. Even if oxidation of the samples can be avoided by taking special precautions, however, evaporation and reaction (with crucible materials) of Sm are practically unavoidable.

The Co-rich part of the Sm-Co phase diagram (Fig. 3) differs from that even very recently reported (Buschow & Den Broeder, 1973) in the following respects:

(a) the two polymorphic forms of Sm_2Co_7 and Sm_2Co_{17} have been inserted correctly,

(b) no peritectic has been observed in the composition range $SmCo_{5+x}$ ($-0.3 \le x \le 1$), (c) one peritectoid and two eutectics have been

(c) one peritectoid and two eutectics have been inserted,

(d) the new phases $SmCo_{5-x}$ and $SmCo_{5+x}$ have been correctly inserted.

It should be noted that SmCo_{5+x} and $\text{Sm}_2\text{Co}_{17}(h)$ are isostructural (*i.e.* of the TbCu₇-type with disordered substitutions). It means that we should obtain a homogeneous region from SmCo_{5+x} to $\text{Sm}_2\text{Co}_{17}(h)$ in the phase diagram, at least, at temperatures near to the solidus. What we experimentally obtain is a eutectic in the neighbourhood of SmCo_7 . An explanation for this discrepancy is still being sought.

The author wishes to thank Professor E. Kneller for valuable discussion, Mr B. Müller for help in preparing the alloys and Dr C. Herget from Th. Goldschmidt for material help.

References

BUSCHOW, K. H. J. (1970). Acta Cryst. B27, 1389-1392.

- BUSCHOW, K. H. J. & DEN BROEDER, F. J. A. (1973). J. Less-Common. Met. 32, 191-201.
- BUSCHOW, K. H. J. & VAN DER GOOT, A. S. (1968). J. Less-Common. Met. 14, 323-328.
- CROMER, D. T. & LARSON, A. (1959). Acta Cryst. 12, 855-859.

KHAN, Y. (1973). Acta Cryst. B29, 2502-2507.

- KHAN, Y. (1974). Phys. Stat. Sol. (a), 20. In the press.
- KHAN, Y. & FELDMANN, D. (1973). J. Less-Common. Met. 31, 211-220.
- KHAN, Y. & MÜLLER, B. (1973). J. Less-Common. Met. 32, 39–45.
- KHAN, Y. & QURESHI, A. H. (1973). *IEEE Trans. Magn.* 9, 156–158.
- LIHL, F., EHALD, J. R., KIRCHMAYR, H. R. & WOLF, H. D. (1969). Acta Phys. Aust. 30, 164–175.
- NAASTEPAD, P. A., DEN BROEDER, F. J. A. & KLEIN-WASSINK, K. J. (1973). *Powder Metall. Int.* 5, 61–65.
- SAGEL, K. (1958). *Tabellen zur Strukturanalyse*, pp. 77–80. Berlin: Springer Verlag.

Acta Cryst. (1974). B30, 864

Crystal Structure of Monoclinic NaCaHSiO₄

BY B.G. COOKSLEY AND H.F.W. TAYLOR

Department of Chemistry, University of Aberdeen, Old Aberdeen, Scotland

(Received 24 October 1973; accepted 25 October 1973)

Monoclinic NaCaHSiO₄ has a structure based on Ca^{2+} and Na⁺ ions and HSiO₄³⁻ groups, which are linked into chains by strong hydrogen bonds. The structure is similar to that of an orthorhombic form, from which it differs in the orientation of the silicate tetrahedra and the arrangement of hydrogen bonds.

NaCaHSiO₄, first synthesized by Thilo, Funk & Wichmann (1951), is important in relation to processes for extracting alumina from aluminosilicate materials. From chemical and other evidence, these workers suggested that it contained separate $HSiO_4^{3-}$ tetrahedra. This conclusion was supported by the spectroscopic studies of Stavitskaya, Ryskin & Mitropol'skii (1968), who concluded also that the tetrahedra were linked by strong hydrogen bonds. Gard, Ramsay & Taylor (1973) reported crystal data; they found the crystals to be monoclinic. In contrast, Lyutin, Kazak, Ilyukhin & Belov (1972) reported a structure determination on crystals that they had found to be orthorhombic, with cell parameters closely related to those given by Gard. Ramsay & Taylor (1973). They confirmed the presence of separate SiO₄ tetrahedra, but the H atoms were assumed to occupy general positions, which implied that they were statistically distributed. The present paper describes a determination of the structure of monoclinic material.

Material and crystal data

The sample was made by grinding together solid NaOH, Ca(OH)₂ and quartz $(0.6\% \text{ Al}_2\text{O}_3, 11200 \text{ cm}^2)$ g^{-1}) in molar ratios 3:2:2 for a few minutes, without taking any special precautions to exclude atmospheric moisture, and heating the resulting powder in a sealed stainless steel vessel for 11 days at 280°C. The presence of a little water is essential to the reaction. The product was washed with cold water. The powder pattern was identical with that given by Gard, Ramsay & Taylor (1973). A true single crystal of sufficient size could not be found, and a twinned crystal was used for the work. It was a prism elongated along **b**, of size $180 \times 50 \times 30$ μ m, twinned on (001), and contained equal amounts of the two components. Crystal data (from rotation, oscillation and Weissenberg photographs) agreed with those given by Gard, Ramsay & Taylor (1973).

Crystal data

Monoclinic, $P2_1$ or $P2_1/m$. a=5.72, b=7.06, c=5.48 Å, $\beta=122.5^{\circ}, V=186.6$ Å³, $Z=2, D_{obs}=2.75, D_{calc}=2.77$ g cm⁻³.

Because the cell is geometrically nearly hexagonal, an unconventional *B*-centred monoclinic cell can be defined that has β nearly 90°, and there are three possible choices of axes which are nearly but not quite identical both for the primitive and for the *B*-centred cell; Gard, Ramsay & Taylor (1973) gave the parameters for all these cells.

Intensity measurement and structure determination

Intensities of 248 independent reflexions were estimated visually from multiple-film Weissenberg photographs of the h0l to h4l layers, taken with filtered Cu radiation. All reflexions were treated as observed. In general, reflexions were measured for both twin components and the results averaged; this provided a partial correction for absorption, but no other absorption correction was applied. For the 0k0 reflexions, intensities were obtained by powder diffractometry.

All calculations were made on an ICL 4/70 computer, with programs based on those kindly supplied by Dr F. R. Ahmed of the National Research Council of Canada, and adapted by Mr J. S. Knowles of the University of Aberdeen Computing Centre. Form factors (for Ca²⁺, Na⁺, Si, O, O⁻, and H) were taken from *International Tables for X-ray Crystallography* (1962).

A trial structure, based on the orthorhombic structure reported by Lyutin, Kazak, Ilyukhin & Belov (1972), was refined by block-diagonal least-squares calculations, initially in $P2_1/m$ and later in $P2_1$. Individual, isotropic temperature factors were used. The H-atom position was based on crystal-chemical considerations, and no attempt was made to refine either the coordinates or the temperature factor assumed for this atom. In the final stages of refinement, the weighting scheme used was $w = 1/[1 + \{(|F_{obs}| - 10.0)/10.0\}^2]$, and analyses against $|F_{obs}|$, $\sin^2 \theta$ and k showed it to be satisfactory. The final R was 0.114 on all reflexions, and a final difference map showed no peaks outside the limits ± 1.5 eÅ⁻³, the largest values being near the Ca ions. Tables 1-3 give, respectively, the observed and calculated structure factors, atomic parameters, and the more important interatomic distances and angles. Fig. 1 shows the structure projected along b.

Table 1. Observed and calculated structure factors (\times 10)

м	PO-	¢¢	ALPre		P 0	۴.	ALPHA		≠ u	FC ALPMA		₹6	۴¢	ALPHA		• 0	۰¢	*****	-	.• 0	*0	ALPAA		FU	۴C	ALPHA	•	Ø0	•0	ALPHA
	4.1.8			-1	114	186	a sini	-4	39	44 114.00	- 3	123	112	17.45		117	125	3.27	- = 1	107	125	34.03	- 3	203	169	109.87	4	60	91	357.97
		•		-2	281	231	3.80		•••		•4	79	77	18.70	•1	54	57	\$0.04	-2	25	25	44.28	-4	115	137	187.58	•1	380	485	9.48
-1	127	117	8.84	- 3	413	442	4.49		1. 1.*	1					•?	432	41/	5.14	- 3	2#	50	¥3.00					-2	49	95	271 21
-2	282	121	101.00	- 4	172	167	4.44					1			-3	187	180	156.69	- 4	32	75	152.23		3, 6.			- 3	133	110	3.57
• • •	441	404	0.88	• •	34		184.00		185	256 359.70					-4	31	47	249.34									-4	358	337	18.99
-4	98	78		-0	113	133	4.08	ī	76	82 249.49		73	67	346.00						3, L.	1			98	63	215.93	• 5	31	59	321.73
-6	1 19	157			• • • •	••••		;	91	44 244.18	i	10	26	342.29		21 1.8	3						1	15	35	241.21	-6	39	40	348.44
-		179			4.1.8			3	96	147 337.84	-1	154	197	191.15						184	175	166.12	-1	76	67	1.45				
									56	32 257.65	- 2	50	50	\$49.40	6	7 e	40	246./3		244	241	8,52	-2	192	94	199.90		41.20	3	
	4.13				249	195	4.44	•1	91	80 101.23		62	36	1.93	1	244	218	s.3/	7	191	10.	354.31	- 3	56	21	16.69				
		•		ĩ	254	296		• • •	120	171 179.66			64	100.10	3	149	140	3.50	5	107	170	201.37	-4	121	120	21.11		248	242	8.37
۰.	84		8.44	;	6.4	12	4.48		1.34	145 16.32					3	115	97	357.47	4	72	70	234.30					1	93	68	351.23
ĩ	529	684		-1	1.40	183	4.48		72	/1 133.33		1	۰		•1	285	232	0.21	1	189	170	283.01		3, 6*	•		ż	149	148	308.91
2	120	122		•2	181	189	4.48		-						-2	472	414	3.3/	-2	20	54	44.08					3	134	123	4.98
3	221	285	8.84	- i	1 11 8	0.5	4.48		1. L#	2	-1	69	50	340.82	- 3	1 39	133	334.00	• 1	20	47	184.15	-1	34	18	204.83	-1	138	130	348.38
	212	226		- 4	102	184	4.04					23		350.45	-4	93	98	353.43					. •	29	87	12.54	-2	82	67	352.79
-1		61		-5	2115	241	2.08		236	228 9.10	- 5	162	141	183.28						3. LB	2						• 3	260	265	5.32
• ż	533	875	4.04	-6	78	92	0.00	1	74	71 225.24	+4	110	92	7.03		21 68	- 4							4, 14			• 4	181	172	350.13
	21.4	21.8	8.84						183	247 196.43									~	232	181	286.95					• 5	31	48	100.15
- 4	121	104	8.88		d. L8				96	94 337.91		2				229	233	5.44	1	49	121	198.75		165	657	12.89	•0	183	117	2.53
- 0	140	167				-			80	65 332.25					1	33	53	338.3/	2	132	111	352.10	-1	55	85	310,74				
	34	22	4.64		27	14	184.60	•1	85	98 188.33		149	130	289.73	2	144	125	6.60	3	50	54	257.02	-2	57	68	284,74		4, L#	4	
	•••				144	171		-2	74	45 25.84	-1	375	594	4.45	+1	320	595	0.96	-1	215	269	15,18	۰.	361	354	11.51				
	1 - 1 - 1 - 1	2		-i		88	4.44	• • •	24	53 145.56	•2	382	362	2.78	-2	32	34	300.00	-2	47	44	74.45	-4	64	49	326.18		115	119	150,57
		-			261	288	4.44	- 4	105	179 171.59	- 3	172	147	281.89	- 3	124	118	2.05	د •	20		188,96	- 5	65	99	150.52	1	181	190	9.07
	429	385	1.11	- 3	192	174						408	290	5./5	-4	239	201	8.04	-4	30	70	49.92					-1	70	58	342.19
	183	176			9.4		4.08		1	3														4, 14	- L		-2	200	214	4,30
ż	294	285	8.60	- 5	181	117	4.00					2				4. L=	. 5		••	3, 6=	د						د •	1/8	147	358,44
5	74	72	100.84	-0	29	47	8.88		63	83 199.75													4	212	245	355,82	+4	190	99	9.19
	143	127	8.24	-7	156	147	4.48	1	76	46 326.70		101	85	342.38		104	154	0.18	÷	160	15	1.62	1	372	368	11.14	• •	164	154	359,28
-1	695	673	6.00					2	58	05 324.48	1	63	65	238.23	-1	109	142	2.05	1	81	72	348,28		57	34	283,56	-6	81	91	348,22
÷2	249	220	180.80	5.0	4. 1.	• •		د	142	24 214.48	2	522	540	5.97	-2	98	95	2.02	2	31	36	235,42	3	123	118	352.08				
-3	69	82	4.64					-1	169	158 359.14	3	250	235	3.04	• 3	219		330.54	3	143	45	310.44	•	1 ¥ 3	598	5.52	4.8	4. L#	•	
- 4	368	638	8.60	-1	171	130	4.00	-2	139	111 184.70	-1	343	384	2.02	•4	123	134	354.85	-1	365	500	193.34	•1	29	142	345,20				
-5	121	180		-2	. 97	80	4.60	- 3	185	1/2 102.10	-2	251	288	8.00					-2	20	20	347,02	-2	296	540	8,19	•	39	34	341.25
	66	48	8.84	د •	146	64	4.48	-4	\$201	288 11.50	- 3	259	387	4,85		2. L=			- 3	234	251	19.01	د -	112	148	337.53	-1	151	9.	356.79
-7	147	135			134	171	8.00				-4	78	180	341.84									-4	151	143	3,25	•2	189	197	3,88
	• · · ·	••••		-0	62	96	3.08		1. 1.	4					-1	82	161	6.00	**	3, Lª			-5	180	165	7.67	-4	133	112	351.94
		• •										2, 11	2		-2	85	84	351.20									-5	151	148	2.02
					1, 0	. y			132	132 351,83					-3	146		¥,02	2	130	129	203.07		4, 64	2 P					
	282	197	8.00					- i	175	183 195,56	6	429	457	3.10	-4	191	192	3.0/	1	"	80	352.34					< a	4, L#	6	
ī	76	76	8.00	•1	158	165	8.24	ż	55	53 322.37	3	330	297	4.45					2	22	76	221.88		189	118	358.87				
ż	268	227		- 2	15.	141	31.41	-1	178	158 358.85	ż	118	95	287.89	K 8	3, 6#	• •		-1	31	35	225.34	1	135	128	348,37	• 3	87	183	1.25
3	179	179	8.00	3	120	134	101,04	-2	272	288 184,89	ة	244	249	4,58					•2	500	385	15,28	2	269	282	10,27	-4	118	128	3.27

 Table 2. Atomic parameters (e.s.d.'s on last digits in parentheses)

	x/a	y/b	z/c	<i>B</i> (Å ²)
Ca	-0.013(1)	0	-0.007(2)	0.86 (5)
Na	0.640(2)	0.271(3)	0.379(2)	$2 \cdot 2$ (2)
Si	0.340(1)	0.259 (2)	0.714 (1)	0.9 (1)
O(1)	0.670(2)	0.261(5)	0.870 (2)	1.5 (2)
O(2)	0.233 (3)	0.264 (5)	0.934 (2)	1.4 (2)
O(3)	0.214 (3)	0.073 (3)	0.501 (3)	1.6 (3)
O(4)	0.206 (3)	0.454 (3)	0.505 (3)	1.4 (3)
Н	0.039	0.201	0.201	4.0

The deviation from the more symmetrical space group, $P2_1/m$, is small, and a final attempt was made to refine in this space group; R was 0.122 on all reflexions. Application of Hamilton's (1965) test, with either conventional or weighted R values, showed that the structure with space group $P2_1/m$ could be rejected at the 0.005 level. The space group $P2_1/m$ implies that the H bonds are symmetrical, and gives an O-H-O distance of 2.51 Å. The space group $P2_1$ allows them to be unsymmetrical, and gives an O-H...O distance of 2.53 Å; this may be considered more probable on crystal-chemical grounds. In subsequent references in this paper to the monoclinic structure, that with space group $P2_1$ is implied.

Discussion

The structure is based on Ca²⁺, Na⁺ and HSiO₄³⁻ ions, and does not differ greatly from the orthorhombic structure reported by Lyutin, Kazak, Ilyukhin & Belov (1972). The most important differences are in the orientation of the silicate tetrahedra and the system of H bonds. In the monoclinic structure, the tetrahedra are so oriented that there are two different O(3)-O(4) distances between atoms of adjacent tetrahedra; some of these O-O vectors are 2.53 Å long and are presumed to contain the H atoms, while the others are 3.44 Å and do not. The H bonds link the tetrahedra into zigzag chains parallel to b. In the orthorhombic structure, the equivalent O-O vectors are all equal in length at 2.99 Å. Lyutin, Kazak, Ilyukhin & Belov (1972) suggested that the H atoms were contained in them. It follows from the space-group symmetry $(C222_1)$ that the H bonds are symmetrical and that the H atoms are statistically distributed over twice the number of O-O vectors; the tetrahedra are linked by H bonds into sheets.

The Si-O bond distances and O-Si-O angles agree well with the suggested H atom position, the bond to O(4), which carries the H atom, being relatively long and those O-Si-O angles that include O(4) relatively small. The Ca coordination is octahedral. The Na coordination is best described as a distorted trigonal bipyramid, with the two axial bonds much longer than

Oxygen atom	Coordinated atoms	Distance(s) Å	E.s.v. sum
O(1)	Si Na Ca	1.60 2.61, 2.88 2.38, 2.42	2.07
O(2)	Si Na Ca	1·62 2·30 2·25, 2·46	1.87
O(3)	Si Na Ca H	1.65 2.25 2.41	2.03
O(4)	Si Na Ca H	1.68 2.37 2.35 1.0	2.03

Fig.1. The structure (space group $P2_1$) projected along b. Bond lengths in Å.

Table 3. Interatomic distances (Å) and	l angles	(e.s.d.'s on	last dig	its in	parentheses
----------------------------------	--------	----------	--------------	----------	--------	-------------

Ca-O(1)	2.42 (3)	Na-O(1)	2 ·61 (1)	SiO(1)	1.60 (2
Ca - O(1)	2.38 (3)	Na-O(1)	2.88 (2)	Si-O(2)	1.62 (2
Ca - O(2)	2.46 (3)	Na-O(2)	2.30(2)	Si-O(3)	1.65 (2
Ca = O(2)	2.25 (3)	Na - O(3)	2.25(3)	Si–O(4)	1.68 (2
Ca = O(3)	2.41(2)	Na-O(4)	2.37(3)		
Ca-O(4)	2.35 (2)				
				Angles a	ut Si
O-O with	in SiO₄ tetrahedra:	min.	2.64 (3)	O(1) - O(2)	114 (1)°
	· · · · · · · · · · · · · · · · · · ·	max.	2.71(2)	O(1) - O(3)	109 (1)
O(3) - O(4)) (H-bond)		2.53 (3)	O(2) - O(3)	110 (1)
Other O-	O between tetrahedra	: min.	3.05 (2)	O(1) - O(4)	109 (1)
Si-O-H a	ngle (assuming linear	H-bond):	112 (Ì)°	O(2) - O(4)	106 (1)
~ ~ ~ ~ ~ ~ ~			(-)	O(3) - O(4)	108 (1)

the three radial ones; for the orthorhombic structure Lyutin, Kazak, Ilyukhin & Belov (1972) described the coordination of this atom as tetrahedral. Table 4 gives the coordination of the oxygen atoms. Pauling's electrostatic valency rule is approximately satisfied if the Ca, Na, Si and H atoms are assumed to form bonds of strength $\frac{1}{3}$, $\frac{1}{5}$, 1 and $\frac{1}{2}$ respectively; the resulting underbonding of O(2) would explain the relative shortness (2.25 Å) of its bond to Ca.

Stavitskaya, Ryskin & Mitropol'skii (1968) concluded from the infrared spectrum that NaCaHSiO₄ contains strong H bonds, with an O-H···O distance of about 2.59 Å. Broad line n.m.r. gave a second moment of 1.5 Oe² at 77° K for the proton band; the authors concluded that the compound contained HSiO₄³⁻ groups linked by the H bonds into zigzag chains. The present results agree reasonably well with these data; the second moment, calculated by van Vleck's formula [see, for example, Andrew (1955)] and assuming either of the space groups $P2_1$ or $P2_1/m$, is about 1.0 Oe².

Fig. 2 gives various sets of X-ray powder data. The observed data for the present sample (Gard, Ramsay

* from the unit cell and atomic coordinates given by Lyutin et al.

& Taylor, 1973) agree closely in both spacings and intensities with those calculated from the parameters found in the present work. They also agree well with the observed data of Stavitskaya, Ryskin & Mitropol'skii (1968) and moderately well with those of Thilo, Funk & Wichmann (1951). We have also prepared a sample by one of the methods used by these workers, namely, treatment of Na₂CaSiO₄ with saturated water vapour at 180°C; the powder pattern of the product showed it to consist of the monoclinic phase studied here mixed with a semi-crystalline calcium silicate hydrate. It thus seems clear that this monoclinic phase is identical with the compounds described by these earlier workers.

Lyutin, Kazak, Ilyukhin & Belov (1972) stated that their sample was prepared hydrothermally at 300-700°C and 1000-3000 atm with an alkali concentration of about 30%, and that their crystals had been identified by single-crystal and powder examination; they considered them to be the same as those studied by Thilo, Funk & Wichmann (1951) and by Stavitskava, Ryskin & Mitropol'skii (1968), However, their observed powder data do not agree with those of any of the other workers, and are moreover incompatible with the unit cell and atomic coordinates that they obtained from their structure determination (Fig. 2). NaCaHSiO₄ thus appears to exhibit polymorphism, but further work is needed to define the conditions of formation and powder pattern of the orthorhombic phase.

References

- ANDREW, E. R. (1955). Nuclear Magnetic Resonance. Cambridge Univ. Press.
- GARD, J. A., RAMSAY, C. G. & TAYLOR, H. F. W. (1973). J. Appl. Chem. Biotechnol. 23, 87-91.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- International Tables for X-ray Crystallography. (1962). Vol. III. Birmingham: Kynoch Press.
- LYUTIN, V. I., KAZAK, V. F., ILYUKHIN, V. V. & BELOV, N. V. (1972). Dokl. Akad. Nauk SSSR, 205, 582–584.
- STAVITSKAYA, G. P., RYSKIN, YA. I. & MITROPOL'SKII, N. A. (1968). *Izv. Akad. Nauk SSSR*, *Neorg. Mater.* 4, 1760–1766.
- THILO, E., FUNK, H. & WICHMANN, E. M. (1951). Abhandl. Dtsch. Akad. Wiss. Berlin, Kl. Math. allgem. Naturwiss. 1950 (4), 1–60.